Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Stress Chaperones ; 28(6): 835-846, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632625

RESUMO

Small heat shock proteins (sHSPs) play a crucial role under abiotic stress and are present in all organisms, from eukaryotes to prokaryotes. However, studies on the sHSP gene family in red alga are limited. In this study, we aimed to identify and characterize NysHSP genes from the genome of N. yezoensis, a marine red alga adapted to the stressful intertidal zone. We identified seven NysHSP genes distributed on all three chromosomes. Expression analysis revealed that all NysHSP genes responded to H2O2 and heat stress in the gametophytic thalli, but these genes responded only to heat stress in the sporophytic conchocelis. NysHSP20.3, which has an acidic isoelectric point (pI) and short N-terminal region, was localized as granules in the cytosol. Fluorescence imaging of the NysHSP25.8-GFP and NysHSP28.4-GFP fusion proteins revealed that these proteins were located in the chloroplast. Based on their characteristics and cellular localization, the NysHSPs are divided into two subfamilies. Subfamily I includes four sHSP genes that strongly respond to heat stress and encode a protein localized in the cytosol. The NysHSP gene of subfamily II encodes a polypeptide with a long N-terminal region located in the chloroplast. This study provides insights into the evolution and function of the sHSP gene family of the marine red alga N. yezoensis and how it adapts to the stressful intertidal zone.


Assuntos
Proteínas de Choque Térmico Pequenas , Rodófitas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Rodófitas/genética
3.
Mar Biotechnol (NY) ; 19(3): 232-245, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28421378

RESUMO

Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.


Assuntos
Chlamydomonas/genética , Rodófitas/genética , Transcriptoma , Água/metabolismo , Sequência de Aminoácidos , Cloroplastos/química , Regulação da Expressão Gênica de Plantas , Microrganismos Geneticamente Modificados , Rodófitas/metabolismo , Estresse Fisiológico/genética
4.
Mar Biotechnol (NY) ; 14(3): 332-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22068390

RESUMO

Heat shock proteins and molecular chaperones are key components contributing to survival in the abiotic stress response. Porphyra seriata grows on intertidal rocks exposed to dynamic environmental changes associated with the turning tides, including desiccation and heat stress. Analysis of the ESTs of P. seriata allows us to identify the nine HSP cDNAs, which are predicted to be PsHSP90, three PsHSP70, PsHSP40 and PsHSP20, and three 5'-truncated HSP cDNAs. RT-PCR results show that most of the PsHSP transcripts were detected under normal cell growth conditions as well as heat stress, with the exception of two cDNAs. In particular, PsHSP70b and PsHSP20 transcripts were upregulated by heat stress. When the putative mitochondrial PsHSP70b was introduced and overexpressed in Chlamydomonas, transformed Chlamydomonas evidenced higher rates of survival and growth than those of the wild type under heat stress conditions. Constitutive overexpression of the PsHSP70b gene increases the transcription of the HSF1 as well as the CrHSP20 and CrHSP70 gene. These results indicate that PsHSP70b is involved in tolerance to heat stress and the effects on transcription of the CrHSP20 and CrHSP70 genes.


Assuntos
Aclimatação/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Porphyra/classificação , Porphyra/metabolismo
5.
J Phycol ; 47(4): 821-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27020018

RESUMO

Temperature is one of the major environmental factors that affect the distribution, growth rate, and life cycle of intertidal organisms, including red algae. In an effort to identify the genes involved in the high-temperature tolerance of Porphyra, we generated 3,979 expression sequence tags (ESTs) from gametophyte thalli of P. seriata Kjellm. under normal growth conditions and high-temperature conditions. A comparison of the ESTs from two cDNA libraries allowed us to identify the high temperature response (HTR) genes, which are induced or up-regulated as the result of high-temperature treatment. Among the HTRs, HTR2 encodes for a small polypeptide consisting of 144 amino acids, which is a noble nuclear protein. Chlamydomonas expressing the Porphyra HTR2 gene shows higher survival and growth rates than the wild-type strain after high-temperature treatment. These results suggest that HTR2 may be relevant to the tolerance of high-temperature stress conditions, and this Porphyra EST data set will provide important genetic information for studies of the molecular basis of high-temperature tolerance in marine algae, as well as in Porphyra.

6.
J Phycol ; 47(5): 1131-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27020195

RESUMO

The red algal order Bangiales has been revised as a result of detailed regional studies and the development of expert local knowledge of Bangiales floras, followed by collaborative global analyses based on wide taxon sampling and molecular analyses. Combined analyses of the nuclear SSU rRNA gene and the plastid RUBISCO LSU (rbcL) gene for 157 Bangiales taxa have been conducted. Fifteen genera of Bangiales, seven filamentous and eight foliose, are recognized. This classification includes five newly described and two resurrected genera. This revision constitutes a major change in understanding relationships and evolution in this order. The genus Porphyra is now restricted to five described species and a number of undescribed species. Other foliose taxa previously placed in Porphyra are now recognized to belong to the genera Boreophyllum gen. nov., Clymene gen. nov., Fuscifolium gen. nov., Lysithea gen. nov., Miuraea gen. nov., Pyropia, and Wildemania. Four of the seven filamentous genera recognized in our analyses already have generic names (Bangia, Dione, Minerva, and Pseudobangia), and are all currently monotypic. The unnamed filamentous genera are clearly composed of multiple species, and few of these species have names. Further research is required: the genus to which the marine taxon Bangia fuscopurpurea belongs is not known, and there are also a large number of species previously described as Porphyra for which nuclear SSU ribosomal RNA (nrSSU) or rbcL sequence data should be obtained so that they can be assigned to the appropriate genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...